

HELLO!

Today we are going to revise Solving Equations & Linear Number Sequences

Arithmetic Warm Up

The rule is add 4,500. What are the missing numbers?

Revision on Algebra

Today we are going to revise how to:

solve equations

create, describe and continue linear number sequences (number patterns)

Revision: Solving equations

You can think of the equal sign (=) as a set of balancing scales. In order to solve an equation, the equal to balance.

What numbers could go in the boxes to make this equation equal?

Revision: Solving equations

Solve this one

2. Think of another pair of numbers that could solve this equation.

Question 1

- 1. What do you <u>notice</u>?
- 2. What do you know?
- 3. Can you show your working out?
- 4. How could you <u>extend</u> the question?

If 🛖 and 😬 stand for two different whole numbers,

and: 📥

Find the value of each shape

Revision: Linear number sequences Term to term

A number sequence is a pattern of numbers that follow a rule.

1	Fill	in	the	missing	terms
١.		11 1	me	HIISSING	1611113

The rule is:

So what number would go before 11? How did you work it out?

Now try this one 27, 21, 15,

The rule is:

So what number would go before 27? How did you work it out?

Revision: Linear number sequences Position to term

Start with the third position (n=3) because we already know the answer = 11

- The first part of the rule = 3n...Why?
- 3n = 3 (3) = 9....what do I need now for my rule to work?
- Check if that rule works with the previous positions

Question 3

Complete

4, 9, 14, 19, 24

- What do you notice?
- What do you know?
- 3. Can you show your working out?
- 4. How could you extend the question?

Tick the rule that describes the sequence of numbers

n = pattern number

$$2n + 5$$
 $4n - 2$ $5n - 1$ $3n + 5$

$$3n + 5$$

I can solve simple equations.

I can create, describe and continue linear number sequences using a formula.

Draw a circle around the smiley face to show how you feel about what we've just been doing.

CHALLENGE

Complete

😬 stand for two different whole numbers,

and:

Find the value of each shape

- What do you notice?
- 2. What do you know?
- 3. Can you show your working out?
- How could you extend the question?

Solving missing number problems with two missing numbers

Find at least three pairs of solutions for

Solving missing number problems with two missing numbers

Find three pairs of solutions for each question.

Continue linear sequences

Continue these linear sequences:

1. 17 23 29 35

2. 238 299 360 421

3. 194 182 170 158

4. 6 1 -4 -9

Finding the nth term for linear sequences with contexts

4 people can sit at a table.

How many people can sit at:

25 tables

3 tables

by side

Finding the nth term for linear sequences with contexts

How many people can sit at:

4 people can sit at a table.

6 people can sit at two tables.

Finding the nth term for linear sequences without contexts

The first term of a linear sequence is 5.
The second term of the same sequence is 10.
The third term is 15.

Write the first 5 terms of this sequence:										
What is the 10 th term of this sequence?										
What is the 10 Term of this sequence.										
What is the 100 th term of this sequence?										
What is the n th term of this sequence?										
What is the 126 th term of this sequence?										

Finding the nth term for linear sequences without contexts

Draw a line from each linear sequence to the correct expression for its nth term.

Question 2

Complete

1. What do you notice?

2. What do you know?

Can you show your working out?

4. How could you <u>extend</u> the question?

Position (p)	0	1	2	3	4
Term		9	16	23	30

- 1) The **term** to term rule is:
- 2) The **position** to term rule is:
- 3) The 11th term is: